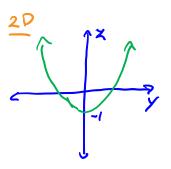
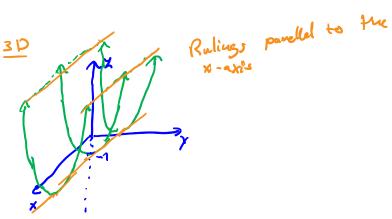

Section 12.6 Cylinders and Quadric Surfaces

When sketching the graph of a surface, fix one of the variables and draw the corresponding *trace*. Traces or cross sections of the surface are the curves of intersection of the surface with planes parallel to the coordinate planes.


DEF: A *cylinder* is a surface that consists of all lines (called rulings) that are parallel to a given line and pass through a given plane curve.


Ex1. Sketch the following cylinders:

(a) Circular cylinder: $y^2 + z^2 = 4$.

(b) Parabolic cylinder: $z = y^2 - 1$.

(c) Elliptic cylinder: $x^2 + 4z^2 = 16$. 2 P 16 4

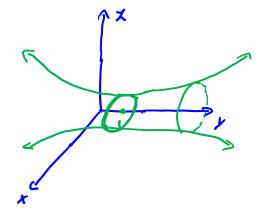
DEF: A quadric surface is the graph in space of a second-degree equation in x, y, and z.
Ex2. Use traces (or cross sections) to sketch the surface
$$z^2 - x^2 - y^2 = 1$$

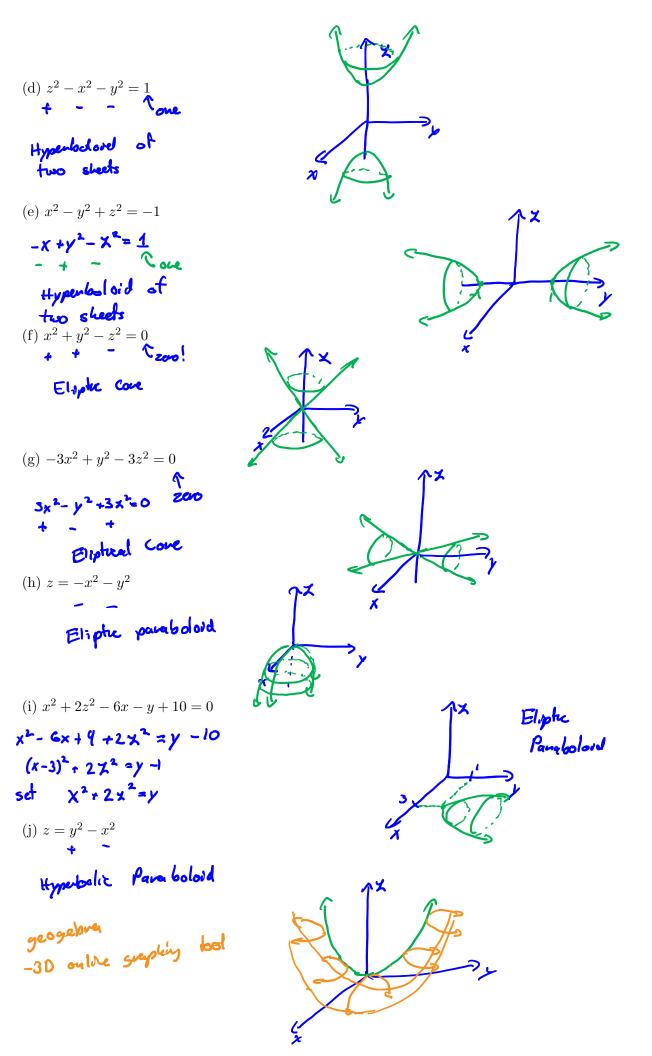
 $x = k$: $k - x^2 - y^4 = 1$ $x^2 + y^2 = k^{4-1}$
 $x = k$: $x^4 - k^4 = 1$ $x^2 - y^4 = 1 + k^4$
 $y = k$: $x^4 - k^4 = 1$ $x^2 - y^4 = 1 + k^4$
 $y = k$: $x^4 - k^4 = 1$ $x^4 - y^4 = 1 + k^4$
 $y = k$: $x^4 - k^4 = 1$ $x^4 - y^4 = 1 + k^4$
 $y = k$: $x^4 - k^4 = 1$ $x^4 - y^4 = 1$
 $y = k$: $x^4 - k^4 = 1$ $x^4 - y^4 = 1$
 $y = k$: $x^4 - k^4 = 1$ $x^4 - y^4 = 1$, sketch the intersection of the surface and the planes
listed below.
 \cdot Cross section at $z = 0$: $x^4 + \frac{y^4}{4} = 1$ $y^4 = 1$ $y^4 = 1$ $y^4 = 1$ $y^4 = 1$

λ

Z

nx


- Cross section at z = 0:
- Cross section at y = 0: $x^2 + x^2 = 1$ "circle"
- Cross section at y = 1: $\chi^2 + \frac{1}{4} + \chi^2 = \frac{3}{4}$
- Cross section at x = 0: $y^2 + y^3 = 1$


Standard Forms

'foot be $\frac{\textbf{Ellipsoid}}{Ax^2 + By^2 + Cz^2} = 1$ (A > 0, B > 0, and C > 0)Hyperboloid of one Sheet $Ax^2 + By^2 + Cz^2 = 1$ (one of A, B, and C is negative and the other two are positive) Hyperboloid of two Sheets $Ax^2 + By^2 + Cz^2 = 1$ (one of A, B, and C is positive and the other two are negative) Elliptic Cone $Ax^2 + By^2 + Cz^2 = 0$ (one of A, B, and C is negative and the other two are positive) Elliptic Paraboloid $z = Ax^2 + By^2$ (A and B are either both negative or both positive)Hyperbolic Paraboloid (Saddle) $z = Ax^2 + By^2$ (A and B have opposite signs)**Ex4.** Identify the quadric surface and sketch.

(b)
$$x^2 + y^2 - z^2 = 1$$

(c)
$$x^{2} - y^{2} + z^{2} = 5 - 2y$$

 $x^{2} - y^{2} + 2y + x^{2} = 5$
 $x^{2} - (y^{2} - 2y - 1) + x^{2} = 5 + 1$
 $x^{2} - (y - 1)^{2} + x^{2} = 4$
 $\frac{x^{2}}{4} - \frac{(y - 1)^{2}}{4} + \frac{x^{2}}{4} = 1$
 t one therefore the sheet

